Facts and Fallacies in Using Genetic Algorithms for Learning Clauses in First-Order Logic
نویسنده
چکیده
Over the last few years, a few approaches have been proposed aiming to combine genetic and evolutionary computation (GECCO) with inductive logic programming (ILP). The underlying rationale is that evolutionary algorithms, such as genetic algorithms, might mitigate the combinatorial explosions generated by the inductive learning of rich representations, such as those used in first-order logic. Particularly, the binary representation approach presented by Tamaddoni-Nezhad and Muggleton has attracted the attention of both the GECCO and ILP communities in recent years. Unfortunately, a series of systematic and fundamental theoretical errors renders their framework moot. This paper critically examines the fallacious claims in the mentioned approach. It is shown that, far from restoring completeness to the learner progol’s search of the subsumption lattice, the binary representation approach is both overwhelmingly unsound and severely incomplete.
منابع مشابه
Optimization of e-Learning Model Using Fuzzy Genetic Algorithm
E-learning model is examined of three major dimensions. And each dimension has a range of indicators that is effective in optimization and modeling, in many optimization problems in the modeling, target function or constraints may change over time that as a result optimization of these problems can also be changed. If any of these undetermined events be considered in the optimization process, t...
متن کاملOptimization of e-Learning Model Using Fuzzy Genetic Algorithm
E-learning model is examined of three major dimensions. And each dimension has a range of indicators that is effective in optimization and modeling, in many optimization problems in the modeling, target function or constraints may change over time that as a result optimization of these problems can also be changed. If any of these undetermined events be considered in the optimization process, t...
متن کاملAre Substitutions the Better Examples? Learning Complete Sets of Clauses with Frog
The paper presents an approach for machine learning in a restricted first-order language with finite minimal Herbrand models by means of a search through a propositional representation space. The learning target is to find a set of goal clauses which can be used to define a target predicate. That is, we deal with single-predicate learning. For the search process we use the learning algorithm Jo...
متن کاملGenerating Optimal Timetabling for Lecturers using Hybrid Fuzzy and Clustering Algorithms
UCTTP is a NP-hard problem, which must be performed for each semester frequently. The major technique in the presented approach would be analyzing data to resolve uncertainties of lecturers’ preferences and constraints within a department in order to obtain a ranking for each lecturer based on their requirements within a department where it is attempted to increase their satisfaction and develo...
متن کاملA Bidirectional ILP Algorithm
The paper presents an approach for using a bidirectional search strategy for inductively learning clauses in a restricted first-order language. The learning target is to find a set of goal clauses that describe the true ground facts of a given target predicate. In our example setting we further assume that the background knowledge is also given in the form of true (and false) ground facts of ea...
متن کامل